High glucose sensitizes adult cardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation.

نویسندگان

  • Ronghua Luan
  • Shaowei Liu
  • Tao Yin
  • Wayne Bond Lau
  • Qiong Wang
  • Wenyi Guo
  • Haichang Wang
  • Ling Tao
چکیده

AIMS Ischaemic cardiac injury is significantly increased in diabetic patients, but its underlying mechanisms remain incompletely understood. The current study attempted to identify new molecular mechanisms potentially contributive to hyperglycaemic-exaggeration of myocardial ischaemic injury. METHODS AND RESULTS Adult mouse cardiomyocytes were cultured in normal-glucose (NG, 5.5 mM) or high-glucose (HG, 25 mM) medium. Twelve hours after NG or HG pre-culture, cardiomyocytes were subjected to 3 h of simulated ischaemia (SI), followed by 3 h of reperfusion (R) in NG medium. Prior to and after SI/R, the following were determined: cardiomyocyte death and apoptosis, sustained oxidative/nitrative stress and thioredoxin (Trx) activity, expression, and nitration. Compared with NG-cultured cardiomyocytes, 12 h HG culture significantly increased superoxide and peroxynitrite production, increased Trx-1 nitration, and reduced Trx activity (P < 0.01). Despite being subject to identical SI/R procedures and conditions, cells pre-cultured in HG sustained greater injury, evidenced by elevated lactate dehydrogenase release and caspase-3 activation (P < 0.01). Moreover, SI/R induced greater superoxide/peroxynitrite overproduction and greater Trx-1 nitration and inactivation in HG pre-cultured cardiomyocytes than in NG pre-cultured cardiomyocytes. Finally, the supplementation of human Trx-1, superoxide scavenger, or peroxynitrite decomposition catalyst in HG pre-cultured cells reduced Trx-1 nitration, preserved Trx-1 activity, and normalized SI/R injury to levels observed in NG pre-cultured cardiomyocytes. CONCLUSION High glucose sensitized cardiomyocytes to ischaemia/reperfusion injury through nitrative Trx-1 inactivation. Interventions restoring Trx-1 activity in the diabetic heart may represent novel therapies attenuating cardiac injury in diabetic patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein

Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin-interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were...

متن کامل

Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells.

The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) we...

متن کامل

Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis.

BACKGROUND Intracellular proteins involved in oxidative stress and apoptosis are nitrated in diseased tissues but not in normal tissues; definitive evidence to support a causative link between a specific protein that is nitratively modified with tissue injury in a specific disease is limited, however. The aims of the present study were to determine whether thioredoxin (Trx), a novel antioxidant...

متن کامل

Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion.

AIMS Apoptosis of cardiomyocytes significantly contributes to the development of post-ischaemic cardiomyopathy. Although mitochondria have been suggested to play a crucial role in this process, the precise mechanisms controlling the mitochondria-dependent apoptosis in cardiomyocytes under ischaemia/reperfusion are still poorly understood. Here we aimed to analyse the role of the soluble adenyly...

متن کامل

Maternal diabetes up‐regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring

Offspring of diabetic mothers are at risk of cardiovascular diseases in adulthood. However, the underlying molecular mechanisms are not clear. We hypothesize that prenatal exposure to maternal diabetes up-regulates myocardial NOX2 expression and enhances ischaemia/reperfusion (I/R) injury in the adult offspring. Maternal diabetes was induced in C57BL/6 mice by streptozotocin. Glucose-tolerant a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 83 2  شماره 

صفحات  -

تاریخ انتشار 2009